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A new, fast, and accurate numerical algorithm to assess stability against ideal
ballooning modes in general three-dimensional magnetic configurations of interest to
controlled thermonuclear fusion is described. The code for ballooning rapid analysis
(COBRA) performs this assessment by solving an eigenvalue problem in the form
of a linear second-order ordinary differential equation along magnetic field lines in
the configuration. An initial approximation for the eigenvalue is obtained from a
fast second order matrix method. In COBRA, this approximate eigenvalue is further
refined using a variational principle to obtain fourth-order convergence with the
mesh size. Richardson’s extrapolation is then applied to a sequence of eigenvalues
to estimate the exact eigenvalue using the coarsest possible mesh, thus minimizing
the computational time. c© 2000 Academic Press
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1. INTRODUCTION

The pursuit of a compact design for a low-cost stellarator fusion reactor has necessitated an
understanding of the magnetohydrodynamic (MHD) properties for fully three-dimensional
(3-D) configurations. The lack of symmetry of these designs makes unavoidable the use
of powerful and sophisticated numerical codes as analysis tools. The optimization of such
configurations from the standpoint of stability, reduced particle transport, and engineering
feasibility is an open problem that has been the object of intense investigations in the last
few years [1–3]. Several compact stellarator configurations based on the concept of quasi-
omnigeneity [4] (quasi-omnigeneous stellarator, QOS) and showing good particle transport
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have recently been obtained using an optimization scheme in which the shape of the outer
magnetic surface is varied within a Levenberg–Marquardt optimization loop, using the
VMEC 3-D equilibrium code [5] at each iteration to recalculate the magnetic field in the
plasma [6, 7]. The plasma thermal energy that can be confined in these configurations, char-
acterized in terms ofβ ≡ 2p/µ0B2 (the ratio of plasma to magnetic energy), is known to be
limited by the onset of unstable kink and ballooning modes [8]. The analysis of ballooning
stability has until now been carried out only after the completion of the optimization pro-
cedure. This is because of the large amount of computational time required by the present
ballooning codes (for instance, TERPSICHORE [9] or 3DBALLOON [10]). Often, this
analysis reveals that the route towards improved transport taken by the optimizer points to
a more ballooning unstable region in parameter space with values ofβ much smaller than
would be desirable for a reactor. The ballooning algorithm described here is sufficiently
fast and efficient to be used for these optimization calculations.

The ballooning stability problem can be formulated by an ordinary linear second-order
differential equation with nonconstant coefficients representing the balance of stabilization
caused by magnetic field line bending and the drive of unfavourable curvature [11–13]. The
boundary conditions imposed on the solution render the spectrum of eigenvalues, which are
proportional to the square of the growth rate for the ballooning mode. These eigenvalues can
be obtained numerically either by integration along a field line or by using trial functions
to minimize the related variational principle. For 3-D geometries, the computational time
increases linearly with the number of grid points along a field line because most of the
calculation is spent evaluating the nonconstant coefficients. Thus, the key to accelerating
this calculation is, in addition to a more efficient integrator or minimizer, determining at
run time for the coarsest possible grid that can be used to obtain the eigenvalue within a
predetermined tolerance. Thecode forballooningrapidanalysis (COBRA) performs this
task by combining an efficient field-line integration scheme with the variational approach to
achieve quartic mesh convergence for the eigenvalue. Then, Richardson’s deferred approach
to the limit [14, 15] is used to extrapolate the eigenvalue from a few evaluations on coarse
but increasingly finer meshes to the continuous limit.

The paper is organized as follows. Section 2 briefly reviews both the ballooning equation
and the related variational principle. The algorithm is then described in detail in Section 3, the
matrix method used to preliminarily obtain the eigenvalue is described in Subsection 3.1, and
the variational refinement of the growth rate is determined in Subsection 3.2. Richardson’s
extrapolation scheme is discussed in Subsection 3.3, and Subsection 3.4 describes the
method for estimating the integration box size. Some numerical results demonstrating both
the accuracy and speed of the new algorithm are presented in Section 4 for a 3-D QOS
configuration.

2. THE IDEAL BALLOONING EQUATION

Let us consider a magnetic equilibrium with closed surfaces labeled by an arbitrary
radial coordinates and nested around a central magnetic axis (corresponding tos= 0).
Introducing generalized toroidal and poloidal angles,ζ andθ , such that the magnetic field
lines are straight [16], ideal ballooning stability can be analyzed solving a linear second-
order ordinary differential equation of the type [11, 12]

[L0(y)+ λR(y)]F = 0, (1)
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along any field line on every magnetic surface, with the operatorL0 defined as

L0(y) ≡ d

dy

[
P(y)

d

dy

]
+ Q(y), (2)

with both P(y) and R(y) strictly positive. The asymptotic behavior of the ballooning
coefficients is given by

P(y), R(y) ∼ y2, Q(y) ∼ y
(3)

y→±∞.

The independent variabley is the normalized length along the magnetic field line. Its
initial value,y= 0, can be chosen to correspond to any prescribed position on the magnetic
surface. The eigenvalueλ is then determined by requiring the solutionF to be integrable
in y ∈ (−∞,+∞). The spectrum of Eq. (1) is complicated [13, 17, 18]. Because of the
self-adjointedness of Eq. (1), its spectrum is real and bounded from below, containing a
discrete part (which may be empty) followed by a continuous part, where the solution,
no longer integrable, remains bounded. Sinceλ≡−γ 2, whereγ is the growth rate of the
ballooning mode, the equilibrium is unstable if some negative eigenvalueλ exists in the
discrete part of the spectrum for any choice of the initial position.

This eigenvalue problem can also be easily cast in the form of a variational principle
defining the functional over the space of all integrable functions [18]

λ(F) ≡ −〈F, L0(y)F〉
〈F, R(y)F〉 , (4)

where the notation

〈G, F〉 ≡
∫ +∞
−∞

G∗(y)F(y) dy (5)

has been introduced. The Euler–Lagrange equation [19] resulting from the minimization of
Eq. (4) is precisely Eq. (1). Therefore, its global minimum,λ0, coincides with the lowest
eigenvalue in the discrete spectrum of Eq. (1). In the same way, the integrable functionF0

satisfying

λ(F0) = λ0 (6)

is the eigenfunction associated with this eigenvalue.

3. DESCRIPTION OF THE ALGORITHM

As mentioned in Section 1, the computational bottleneck of any ballooning code is the
costly evaluation in terms of CPU time of the coefficientsP, Q, and R in Eq. (1) and
Eq. (4) at the grid points along the magnetic field line. These coefficients are functions of
the magnetic field through|B| and the metric elements of the coordinate transformation
from the straight-line system to standard cylindrical coordinates(R, φ, Z). These quantities
are calculated by the VMEC equilibrium code and are supplied to the ballooning code in
the form of the coefficients of an odd(O) or even(E) Fourier series (stellarator symmetry



THE COBRA OPTIMIZED BALLOONING CODE 579

constrains the allowable parities),

E(s, θ, ζ ) =
∑
m,n

Emn(s) cos(mθ − nζ ) (7)

O(s, θ, ζ ) =
∑
m,n

Omn(s) sin(mθ − nζ ). (8)

Because of the complex geometry of the configurations of interest, mode convergence
studies show that generally a large number of modes for|B|, R, Z, andρ≡φ−φs (φs= ζ is
the toroidal angle in which magnetic field lines are straight) have to be retained in these series
(typically 500 to 1000 modes; this is in contrast to axisymmetric configurations such as the
tokamak, for which much fewer modes, typically less than 100, are sufficient). This large
number is a consequence of the use of straight-field-line magnetic coordinates. (Non-straight
magnetic coordinates, like those used in the equilibrium calculation, appear to be better-
suited for this type of calculation. However, the derivation of Eq. (2) then becomes more
complicated; the algebraic (straight line) description of magnetic field lines must be replaced
by a differential equation relating the poloidal and toroidal angles. Ballooning calculations
in which such coordinates are used are envisioned as future upgrades of COBRA.)

The Fourier inversion of these series inside the ballooning code is therefore responsible
for most of the computing time used (up to 95% of the time for the typical number of
grid points used in existing codes). Because the number of Fourier inversions increases
linearly with the number of grid points, the efficiency of the calculation may be improved
by (1) using a fast solver (for a given number of points), and (2) determining at run time
the minimum number of grid points required to obtain the eigenvalue within a prescribed
accuracy.

In COBRA, the efficient solver is a finite-difference matrix scheme (described in Sub-
section 3.1) that allows a rapid evaluation of the eigenvalue to second order in they-mesh
spacing. This eigenvalue is subsequently refined to fourth order using the variational prin-
ciple (Subsection 3.2). Richardson’s extrapolation scheme (Subsection 3.3) is then used to
estimate the infinite-mesh limit for the eigenvalue using the current mesh. This process is
iterated using finer meshes until the extrapolation error falls below a prescribed tolerance.

3.1. Finite-Difference Matrix Scheme

Before discretizing Eq. (1), a large but finite integration box [−a,a] along the field line
is chosen, witha> 0 sufficiently large to ensure that the effect on the computed lowest
eigenvalue of a further increase of the box size is negligible. Criteria for selectinga are
given in Subsection 3.4. Assuming now an odd number of points,N, both full and half
meshes are defined as

yj = −a+ h( j − 1), j = 1, N
(9)

yj+1/2 = −a+ h( j − 1/2), j = 1, N − 1,

where the step sizeh is defined as

h ≡ 2a

N − 1
. (10)

The ideal ballooning equation is then discretized using a centered second-order,
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finite-difference scheme

Pj + 1/2

(
Fj+1− Fj

h2

)
− Pj−1/2

(
Fj − Fj−1

h2

)
+ (Qj + λmRj )Fj = 0, j = 2, . . . , N− 1, (11)

where integer (half-integer) subscripts denote evaluation on the full (half) mesh. The eigen-
value has been superscripted (withm for “matrix”) to clarify the discussion of the algorithm
in later sections. Integrability of the solution is ensured by imposing the boundary conditions

F1 = FN = 0. (12)

Defining now a solution vector̄Fm = (F2, . . . , FN−1), Eq. (11) is easily cast into matrix
form,

A · F̄m = λmF̄m. (13)

The components of the matrixA are given by

h2Ai j = δi, j−1

(
Pj+3/2

Rj

)
+ δi, j+1

(
Pj+1/2

Rj+1

)
− δi j

Pj+3/2+ Pj+1/2− h2Qj+1

Rj+1
, i, j = 1, . . . , N − 2. (14)

In this form, the task of obtaining the spectrum of Eq. (1) is reduced to obtaining the
eigenvalues of a(N− 2)× (N− 2) real nonsymmetric tridiagonal matrix. Interestingly
enough, the nondiagonal cross products are strictly positive because of the positiveness of
both R andP. This allows the use of a very fast algorithm. The lowest eigenvalue (or any
other eigenvalue of the discrete part of the spectrum) is first bracketed using Gerschgorin’s
theorem [20] and then approximated using a combination of bisection and Newton-like
methods, as is shown in Section 4. The eigenfunctionF̄m is obtained by inverse iteration [15].

3.1.1. Symmetry points.For certain choices of the initial pointy= 0, the number of grid
points required can be halved without losing accuracy in the calculation of the eigenvalue.
In 3-D configurations with stellarator symmetry, a set of initial points exists for which the
ballooning equation is symmetric under the transformationy→−y. These points are of
the form

(θ0, ζ0) =
(

lπ, k
π

M

)
, l , k = 0, 1, . . . , (15)

with M the periodicity of the configuration. It is often the case that the most unstable
ballooning modes are located at one of these positions. The integration domain can then
be restricted to [0,a], and solutions of a defined parity (even or odd) are sought. In this
way, the lowest eigenvalue can be computed for roughly half as many grid points as in
the nonsymmetric case. In terms of speed, it means an improvement of a factor of two (or
possibly even more, since further computational efficiency is gained when evaluating the
lowest eigenvalue of a matrix with a dimension half as large). Because the most unstable
mode in this case is always an even eigenfunction [18], the following boundary conditions
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are used, (
dF

dy

)
1

= FN = 0. (16)

As in the nonsymmetric case, the problem can be cast in the same matrix form given by
Eq. (13), when includingF1 in the definition ofF̄m. The new(N+ 1)/2× (N+ 1)/2 real
matrix A coefficients are now given by

h2Ai j =


2δi, j−1

(
Pj−1

Rj−1

)
− 2δi j

Pj

Rj
, i = 1, j = 1, . . . , (N + 1)/2

δi, j−1

(
Pj+3/2

Rj

)
+ δi, j+1

(
Pj+1/2

Rj+1

)
− δi j

Pj + 3/2+ Pj+1/2− h2Qj+1

Rj+1
, i, j = 2, . . . , (N + 1)/2.

(17)

It is important to note that in the nonsymmetric [symmetric] case, the spectrum of matrixA
is discrete and contains, at most,N− 2 [(N+ 1)/2] distinct eigenvalues, while the spectrum
of Eq. (1) usually contains both discrete and continuous parts. The discreteness comes from
the finite size of the numerical integration box, while the finite number of eigenvalues
is due to the finite value of the grid step sizeh. Not surprisingly, Eq. (1) reduces to a
standard St¨urm–Liouville equation, with only a discrete spectrum containing infinitely
many increasing real eigenvalues, when the domain is chosen to be the compact intervals
[−a,a] or [0,a] [17]. As the value ofh is reduced, Eq. (13) gives a better approximation of
the firstN− 2 [(N+ 1)/2] eigenvalues of the St¨urm–Liouville spectrum. When the domain
is no longer compact, the discrete eigenvalues (if they exist at all) remain at the lower part
of the spectrum. Therefore, choosing a sufficiently large compact domain provides a very
good approximation of these lower eigenvalues, which correspond to the most unstable
ballooning modes.

3.2. Variational Refinement

Using the second-order matrix scheme described in Subsection 3.1, a series of approxi-
mations to the actual eigenvalue is computed for increasingly finer meshes, with step sizes
halved successively

hk = h0

2k
, k = 0, 1, . . . , kmax. (18)

This relation is chosen to minimize the number of new Fourier inversions required at
each step. Notice that in Eq. (11), the values ofP, Q, and R on the full mesh at the
(k+ 1)st iteration can be constructed without any further evaluation from their values on
the full and half meshes at thekth iteration. The initial step sizeh0 is usually chosen
very large, corresponding to a coarse mesh. The step size reduction iteration terminates
for iterationk= kmax when the extrapolation error falls below the specified tolerance (see
Subsection 3.3).

When the matrix algorithm is used, the error in the eigenvalue is quadratic [14] in the
mesh spacing,

λm = λ0+ αh2+ O(h3). (19)

The number of iterations needed for convergence can be reduced if the leading exponent in
the power law in Eq. (19) can be increased. COBRA achieves this by refining the eigenvalue
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obtained at each iteration so that its dependence on the mesh step size becomes quartic,
rather than quadratic. Becauseλ0 is a minimum, the first variation of the functional given
by Eq. (4) around the related eigenfunctionF0 must vanish. Suppose now thatF0 could
somehow be approximated to orderp accuracy,

F = F0+ hpδF + O(hp+1), δF ∼ O(1). (20)

InsertingF into Eq. (4), it is straightforward to obtain

λ(F) = λ0− h2p

[ 〈δF, L0(y)− λ0R(y)δF〉
〈F, R(y)F〉

]
+ O(h2p+1), (21)

which is thus accurate to order 2p.
Because the solution obtained from the matrix method,F̄m, approximates the real solution

to second order inh, inserting it into Eq. (4) thus gives a fourth order accurate approximation
at each iteration,

λv = λ0+ σh4+ O(h5). (22)

Now the eigenvalue has been superscripted withv (“variational”) for clarity. Here,σ >0,
sinceλ0 is a global minimum.

There is, however, a numerical subtlety related to the accuracy of the discretization chosen
for the operatorL0 whenλv is to be evaluated. If the same second order discretization scheme
in Subsection 3.1 is used forL0,

L0 = Ld
0+ h2δL0+ O(h3), δL0 ∼ O(1), (23)

then the numerical equivalent to Eq. (21), obtained by insertingF̄m in Eq. (4) and usingLd
0

instead ofL0, becomes

λ(F̄m) = λ0+ h2

[ 〈F̄m, δL0F̄m〉
〈F̄m, R(y)F̄m〉

]

+ h4

[
2〈δ F̄m, δL0F̄m〉
〈F̄m, R(y)F̄m〉 −

〈
δ F̄m, Ld

0(y)− λ0R(y)δ F̄m
〉

〈F̄m, R(y)F̄m〉

]
+ O(h5). (24)

Notice theO(h2) term which dominates and thus masks the desiredO(h4) scaling. To
eliminate this term, it is necessary to use at least a fourth-order accurate discretization forL0.
Thus by introducing the higher-order discretization only in this variational formula, Eq. (24),
the required scaling given by Eq. (22) is achieved without significantly increasing the
computational time. In contrast, the efficiency of the algorithm would be critically affected
if it were included in the matrix scheme (the matrixA would no longer be tridiagonal, and
a different and slower technique would have to be used to computeλm).

3.3. Richardson’s Extrapolation

The computational speed of the overall COBRA algorithm depends critically on the
number of iterations to achieve convergence of the eigenvalue ask→∞ in Eq. (18). Every
new iteration(k) increases the computational time by a factor of two. Because of theh4

scaling of the varitional eigenvalue in Eq. (22) [in contrast to theh2 scaling in Eq. (19)], it
is possible to use Richardson’s extrapolation [15] on a fairly coarse mesh to nevertheless
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obtain thehk→ 0 limit, λ0, of the eigenvalue. This scheme also provides an estimate of the
extrapolation error, which is used to terminate the mesh sequencing as noted previously in
Subsection 3.2.

3.4. Integration Box Size

The ballooning equation can also be transformed into a Schr¨odinger-like equation by
changing to a new variable [17],

τ(y) =
∫ y

0

√
R(s)/P(s) ds, (25)

and by introducing a new dependent variable,H , defined as

H(τ ) ≡ [ P(y(τ ))R(y(τ ))]1/4F(y(τ )). (26)

The resulting Schr¨odinger-like equation takes the form

d2H

dτ 2
+ [λ− V(τ )]H = 0, (27)

with the “ballooning potential,”V , given by

V(τ ) = −
(

Q

R

)
− 3

16

[
d(P R)/dτ

P R

]2

+ 1

4

[
d2(P R)/dτ 2

P R

]
. (28)

Using the asymptotic behaviour of the ballooning coefficients (see Eq. (3)), it is easily
verified thatV(τ )→ 0 wheny→±∞, implying that solutions forλ>0 are in the con-
tinuum part of the spectrum. Forλ<0, unstable ballooning modes can be localized in the
potential well existing atτ = 0 (if the well is sufficiently deep, see Fig. 1). The modes may

FIG. 1. Ballooning potential on different magnetic surfaces as a function of field line lengthy for the QOS
equilibrium described in Section 4.
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FIG. 2. Unstable eigenfunction and ballooning potential for the 13th surface.

also extend to nearby wells. These wells are separated by potential barriers (see Fig. 2)
whose location along the magnetic field line strongly depends on the periodicity of the
configuration,M , and the twist of the field line along the toroidal direction, characterized
by ι, the ratio between the number of poloidal turns carried out during one toroidal turn. As
a practical prescription, the location of thekth barrier can be roughly estimated as

ybarrier(k) ∼ π

Mι
(2k− 1), k = 1, 2, . . . . (29)

This prescription can be used to choose an appropriate value fora, the minimum size of
the integration box, in the following way. Notice that when the mode extension goes beyond
the first few barriers, the potential is no longer able to localize/destabilize the mode, which
ceases to be integrable (it remains bounded, however, and becomes part of the continuous
part of the spectrum). A typical case is shown in Fig. 3, where a nonlocalized (stable)
mode escapes through the next barriers when the integration box size is increased. Since
only unstable modes are of interest for the stability analysis, it is thus sufficient to set
a= ybarrier(kw) with kwÀ 1 in Eq. (29). In most COBRA runs,kw = 10. Notice that this
prescription implies thata changes at different magnetic surfaces, sinceι usually varies
from surface to surface due to magnetic shear.

4. NUMERICAL RESULTS

The main improvements included in COBRA with respect to the existing codes are
Richardson’s extrapolation scheme (RES), the variational refinement (VAR), and the use
of symmetry. To numerically test these enhancements, some COBRA results are presented
for an unstable QOS equilibrium configuration with periodicityM = 3, β ' 2.5%, and
containing 31 nested magnetic surfaces. Here,β is the volume-averaged measure of pressure.
The number of modes used in the series representation for|B|, R, Z, andρ is 829. The
equilibrium is ballooning unstable all across the central region as shown in Fig. 4 (remember



THE COBRA OPTIMIZED BALLOONING CODE 585

FIG. 3. Stable eigenfunction and ballooning potential for the 24th surface and increasing value ofa. In the
upper plot, the corresponding eigenvalue is shown.

that the growth rate is given byγ 2=−λ). With respect to COBRA-specific parameters, all
runs have been done setting the extrapolation error tolerance to 10−3, the initial step size to
h0= 0.4, and the box size is set withkw = 10. All calculations have been performed on the
CRAY C-90 at the National Energy Research Supercomputer Center (NERSC).

FIG. 4. Ballooning growth rateγ = (−λ)1/2 normalized to the Alfv´en time,τA≡
√
µ0ρR2

0/B2
0 , ρ being the

plasma mass density,R0 the cylindrical major radius, andB0 the magnetic field at the magnetic axis.
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FIG. 5. Eigenvalue computed from the matrix scheme (open circles) and from the variational principle (VAR)
(closed squares) as a function of the grid step-sizeh. The last few values used in the Richardson extrapolation
(RES) are represented using distinctive symbols (respectively closed circles and open squares). All numerical
values used in the extrapolation are listed in Table I.

To illustrate first how VAR works, bothλm andλv are plotted versus the grid step size,
h, in Fig. 5 for the 13th surface of the QOS equilibrium. The respective quadratic and
quartic scalings can be clearly seen (the “exact” eigenvalue is also shown as a straight line
for an easier comparison). Notice that the matrix scheme requires a mesh with a grid step
size considerably finer to approximate the eigenvalue with accuracy comparable to that
obtained with VAR. Using VAR reduces the number of iterations needed inside RES: the
last few values ofλm andλv that COBRA actually needs to respectively extrapolate the final
eigenvalue from the matrix and variational values are also plotted in Fig. 5 using distinctive
symbols (all of them are listed in Table I). Not surprisingly, the faster converging variational
values allow extrapolation of the eigenvalue from a mesh that is twice as coarse (i.e., two
times faster) for this particular case.

The performance and accuracy of COBRA compares advantageously with the balloon-
ing codes currently in use. Both TERPSICHORE and 3DBALLOON rely on second-
order accurate shooting algorithms with a fixed step sizehf . To compute the eigenvalue

TABLE I

Eigenvalue Convergence Sequence on the 13th Surface

Richardson’s scheme

Matrix Variational Fixed step size

Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric

h0= 0.4 −0.19247 −0.19426 0.09845 0.09876
h1= 0.2 −0.11952 −0.11953 −0.09500 −0.09499
h2= 0.1 −0.11142 −0.11142 −0.10819 −0.10819
h3= 0.05 −0.10963 −0.10963
hf = 0.01 −0.10945 −0.10945
λextrapolated −0.10945 −0.10945 −0.10945 −0.10945
kmax 4 4 3 3
CPU time(s) 0.4512 0.2268 0.2314 0.1247 1.8756 0.9465
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FIG. 6. CPU time required (lefty-axis) to compute the ballooning growth rate from an initial symmetric point
using: (a) RES coupled to the matrix solver (open diamonds); (b) RES coupled to VAR (closed circles); (c) a fixed
step-size second-order shooting scheme (closed squares), and (d) the same as (c) but without using symmetry
(open circles). Case (d) is equivalent to the approach of TERPSICHORE or 3DBALLOON. The growth rates are
also included (righty-axis) to make apparent the finer meshes usually required for those modes which are close
to becoming stable.

with accuracy comparable to COBRA,hf must be chosen inside the “well-converged”
region of the quadratic power law in Fig. 5 (typically,hf ' 0.005− 0.01). This value is
already five times smaller than the smallest step size that COBRA would need if the
matrix scheme were used, and ten times smaller if VAR were considered. In Fig. 6, the
CPU times required by the different methods are plotted together for a symmetric ini-
tial point choice. Notice how the use of symmetry allows a reduction of the time of the
fixed step size scheme by a factor close to 2. When RES is coupled to the second-order
solver, the CPU time is further reduced by a factor between 3 and 5, depending on the
extension of the mode along the line. Finally, the total speed gain factor approaches 20 if
VAR is considered because VAR’s faster convergence is less sensitive to changes in the
mode extension, as shown in Fig. 6. Also notice that without any extra computing time,
convergence of the eigenvalue is guaranteed within this approach, while both TERPSI-
CHORE and 3DBALLOON would require rerunning with a smaller step size to confirm this
point.

There are other important advantages of this new approach as well. First, COBRA adapts
the step size on different surfaces at run time to take into account the varying extension of
the mode (notice that this is critical at those surfaces where the mode is close to becoming
stable, as shown in Fig. 6). Second, the generality of the algorithm allows it to estimate in
the same way any other eigenvalue of the discrete part of the spectrum of the ballooning
equation. Even when 3DBALLOON can also evaluate all of them, it identifies the required
eigenvalue by counting the computed eigenfunction zeros along the magnetic line (the
eigenfunction associated to thekth eigenvalue must have(k− 1) zeros inside the integration
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interval [18]). However, this count can sometimes be rather sensitive because of the unex-
pected appearance, close to the boundaries of the interval, of numerical zeros caused by
roundoff errors whenk becomes large and the eigenvalue is close to the continuum.
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