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A new, fast, and accurate numerical algorithm to assess stability against ideal
ballooning modes in general three-dimensional magnetic configurations of interest to
controlled thermonuclear fusion is described. The code for ballooning rapid analysis
(COBRA) performs this assessment by solving an eigenvalue problem in the form
of a linear second-order ordinary differential equation along magnetic field lines in
the configuration. An initial approximation for the eigenvalue is obtained from a
fast second order matrix method. In COBRA, this approximate eigenvalue is further
refined using a variational principle to obtain fourth-order convergence with the
mesh size. Richardson’s extrapolation is then applied to a sequence of eigenvalues
to estimate the exact eigenvalue using the coarsest possible mesh, thus minimizing
the computational time. © 2000 Academic Press
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1. INTRODUCTION

The pursuit of acompact design for alow-cost stellarator fusion reactor has necessitate
understanding of the magnetohydrodynamic (MHD) properties for fully three-dimensior
(3-D) configurations. The lack of symmetry of these designs makes unavoidable the
of powerful and sophisticated numerical codes as analysis tools. The optimization of s
configurations from the standpoint of stability, reduced particle transport, and engineet
feasibility is an open problem that has been the object of intense investigations in the
few years [1-3]. Several compact stellarator configurations based on the concept of qt
omnigeneity [4] (Quasi-omnigeneous stellarator, QOS) and showing good particle trans;
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have recently been obtained using an optimization scheme in which the shape of the c
magnetic surface is varied within a Levenberg—Marquardt optimization loop, using t
VMEC 3-D equilibrium code [5] at each iteration to recalculate the magnetic field in tf
plasma [6, 7]. The plasma thermal energy that can be confined in these configurations,
acterized in terms 8 = 2p/ 1o B? (the ratio of plasma to magnetic energy), is known to be
limited by the onset of unstable kink and ballooning modes [8]. The analysis of ballooni
stability has until now been carried out only after the completion of the optimization pr
cedure. This is because of the large amount of computational time required by the pre
ballooning codes (for instance, TERPSICHORE [9] or 3DBALLOON [10]). Often, thi
analysis reveals that the route towards improved transport taken by the optimizer poin
a more ballooning unstable region in parameter space with valyg¢smfch smaller than
would be desirable for a reactor. The ballooning algorithm described here is sufficier
fast and efficient to be used for these optimization calculations.

The ballooning stability problem can be formulated by an ordinary linear second-ort
differential equation with nonconstant coefficients representing the balance of stabiliza
caused by magnetic field line bending and the drive of unfavourable curvature [11-13]."
boundary conditions imposed on the solution render the spectrum of eigenvalues, whict
proportional to the square of the growth rate for the ballooning mode. These eigenvalues
be obtained numerically either by integration along a field line or by using trial functiot
to minimize the related variational principle. For 3-D geometries, the computational tir
increases linearly with the number of grid points along a field line because most of -
calculation is spent evaluating the nonconstant coefficients. Thus, the key to accelere
this calculation is, in addition to a more efficient integrator or minimizer, determining
run time for the coarsest possible grid that can be used to obtain the eigenvalue with
predetermined tolerance. Thede forballooningrapid analysis (COBRA) performs this
task by combining an efficient field-line integration scheme with the variational approact
achieve quartic mesh convergence for the eigenvalue. Then, Richardson’s deferred app
to the limit [14, 15] is used to extrapolate the eigenvalue from a few evaluations on coa
but increasingly finer meshes to the continuous limit.

The paper is organized as follows. Section 2 briefly reviews both the ballooning equat
andtherelated variational principle. The algorithmis then described in detail in Section 3,
matrix method used to preliminarily obtain the eigenvalue is described in Subsection 3.1,
the variational refinement of the growth rate is determined in Subsection 3.2. Richards
extrapolation scheme is discussed in Subsection 3.3, and Subsection 3.4 describe
method for estimating the integration box size. Some numerical results demonstrating |
the accuracy and speed of the new algorithm are presented in Section 4 for a 3-D (
configuration.

2. THE IDEAL BALLOONING EQUATION

Let us consider a magnetic equilibrium with closed surfaces labeled by an arbitr:
radial coordinates and nested around a central magnetic axis (corresponding=10).
Introducing generalized toroidal and poloidal angleand6, such that the magnetic field
lines are straight [16], ideal ballooning stability can be analyzed solving a linear seco
order ordinary differential equation of the type [11, 12]

[Lo(y) + AR(N]F =0, @)
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along any field line on every magnetic surface, with the opetagatefined as

d d
Lo(y) = dy [P(y)dy} + Q(y), 2

with both P(y) and R(y) strictly positive. The asymptotic behavior of the ballooning
coefficients is given by

P(y), Ry ~¥% Q) ~Yy

y — +o0.

3)

The independent variablg is the normalized length along the magnetic field line. Its
initial value,y = 0, can be chosen to correspond to any prescribed position on the magni
surface. The eigenvalueis then determined by requiring the solutibnto be integrable
iny e (—o0, +00). The spectrum of Eq. (1) is complicated [13, 17, 18]. Because of th
self-adjointedness of Eq. (1), its spectrum is real and bounded from below, containin
discrete part (which may be empty) followed by a continuous part, where the solutic
no longer integrable, remains bounded. Sihee—y?, wherey is the growth rate of the
ballooning mode, the equilibrium is unstable if some negative eigenvagasts in the
discrete part of the spectrum for any choice of the initial position.

This eigenvalue problem can also be easily cast in the form of a variational princif
defining the functional over the space of all integrable functions [18]

(F, Lo(Y)F)
AP =—~r—"-—"F—, 4
=" ryF )
where the notation
+00
<GHE/ G*(y)F(y) dy (5)

has been introduced. The Euler—Lagrange equation [19] resulting from the minimizatior
Eqg. (4) is precisely Eqg. (1). Therefore, its global minimui, coincides with the lowest
eigenvalue in the discrete spectrum of Eq. (1). In the same way, the integrable fuRgtior
satisfying

A(Fo) = Ao (6)

is the eigenfunction associated with this eigenvalue.

3. DESCRIPTION OF THE ALGORITHM

As mentioned in Section 1, the computational bottleneck of any ballooning code is
costly evaluation in terms of CPU time of the coefficie®s Q, andR in Eq. (1) and
Eq. (4) at the grid points along the magnetic field line. These coefficients are functions
the magnetic field througtB| and the metric elements of the coordinate transformatio
from the straight-line system to standard cylindrical coording®eg, Z). These quantities
are calculated by the VMEC equilibrium code and are supplied to the ballooning code
the form of the coefficients of an od®) or even(E) Fourier series (stellarator symmetry
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constrains the allowable parities),

E(s,0,8) =Y Emn(S) cOSmME — n¢) ™
0(s,0,¢) = Z Omn(S) SiN(Md — ne). (8)

Because of the complex geometry of the configurations of interest, mode converge
studies show that generally a large number of modgEoR, Z,andp = ¢ — ¢s (ps = is
the toroidal angle in which magnetic field lines are straight) have to be retained in these se
(typically 500 to 1000 modes; this is in contrast to axisymmetric configurations such as
tokamak, for which much fewer modes, typically less than 100, are sufficient). This lar
number is a consequence of the use of straight-field-line magnetic coordinates. (Non-str:
magnetic coordinates, like those used in the equilibrium calculation, appear to be be
suited for this type of calculation. However, the derivation of Eq. (2) then becomes m
complicated; the algebraic (straight line) description of magnetic field lines must be repla
by a differential equation relating the poloidal and toroidal angles. Ballooning calculatic
in which such coordinates are used are envisioned as future upgrades of COBRA.)

The Fourier inversion of these series inside the ballooning code is therefore respons
for most of the computing time used (up to 95% of the time for the typical number |
grid points used in existing codes). Because the number of Fourier inversions incre:
linearly with the number of grid points, the efficiency of the calculation may be improve
by (1) using a fast solver (for a given humber of points), and (2) determining at run tir
the minimum number of grid points required to obtain the eigenvalue within a prescrit
accuracy.

In COBRA, the efficient solver is a finite-difference matrix scheme (described in Su
section 3.1) that allows a rapid evaluation of the eigenvalue to second ordenjmiksh
spacing. This eigenvalue is subsequently refined to fourth order using the variational p
ciple (Subsection 3.2). Richardson’s extrapolation scheme (Subsection 3.3) is then usi
estimate the infinite-mesh limit for the eigenvalue using the current mesh. This proces
iterated using finer meshes until the extrapolation error falls below a prescribed tolerar

3.1. Finite-Difference Matrix Scheme

Before discretizing Eq. (1), a large but finite integration bexa[a] along the field line
is chosen, witha > 0 sufficiently large to ensure that the effect on the computed lowe
eigenvalue of a further increase of the box size is negligible. Criteria for selextimg
given in Subsection 3.4. Assuming now an odd number of poMdigyoth full and half
meshes are defined as

yj=-a+h(j-1, j=LN
. . %)
Yj+12 = —a+h(j —1/2), j=1N-1,
where the step sizeis defined as
2a
TN-T (10)

The ideal ballooning equation is then discretized using a centered second-or
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finite-difference scheme

Fio1— Fj Fi—Fis
Pj+1/2<7j+h2 J>—F’j—1/2<7J hzj )

where integer (half-integer) subscripts denote evaluation on the full (half) mesh. The eig
value has been superscripted (withior “matrix”) to clarify the discussion of the algorithm
in later sections. Integrability of the solution is ensured by imposing the boundary conditic

Fi=Fy=0. (12)
Defining now a solution vectdF™ = (Fo, ..., Fn_1), Eqg. (11) is easily cast into matrix
form,
A-FM=A"F™M (13)

The components of the matrik are given by

Pj13/2 Pj11/2
h2A: — & « o J+3 5 i
Au i, 1( Rj + i,j+1 Rj+l

5. Pixazt Pieyz — h?Qj+1
— 8

Ry , i,j=1,...,N—=-2 (14)

In this form, the task of obtaining the spectrum of Eq. (1) is reduced to obtaining tl
eigenvalues of dN — 2) x (N — 2) real nonsymmetric tridiagonal matrix. Interestingly
enough, the nondiagonal cross products are strictly positive because of the positivene!
both R and P. This allows the use of a very fast algorithm. The lowest eigenvalue (or at
other eigenvalue of the discrete part of the spectrum) is first bracketed using Gerschgo
theorem [20] and then approximated using a combination of bisection and Newton-|
methods, asis shownin Section4. The eigenfundfi@ris obtained by inverse iteration[15].

3.1.1. Symmetry pointsFor certain choices of the initial poigit= 0, the number of grid
points required can be halved without losing accuracy in the calculation of the eigenval
In 3-D configurations with stellarator symmetry, a set of initial points exists for which tt
ballooning equation is symmetric under the transformaties —y. These points are of
the form

(9o,§o):<ln,k%), l.k=0.1..... (15)

with M the periodicity of the configuration. It is often the case that the most unstak
ballooning modes are located at one of these positions. The integration domain can
be restricted to [0a], and solutions of a defined parity (even or odd) are sought. In th
way, the lowest eigenvalue can be computed for roughly half as many grid points as
the nonsymmetric case. In terms of speed, it means an improvement of a factor of two
possibly even more, since further computational efficiency is gained when evaluating
lowest eigenvalue of a matrix with a dimension half as large). Because the most unst:
mode in this case is always an even eigenfunction [18], the following boundary conditic
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are used,
dF
() =Fy=0. (16)
dy /4
As in the nonsymmetric case, the problem can be cast in the same matrix form giver

Eq. (13), when includingdr; in the definition ofF™. The new(N + 1)/2x (N+1)/2real
matrix A coefficients are now given by

P P, . .
25i.j—1<R’jj)—25inf’j, i=1j=1....,(N+1)/2
hZA“- — aiyj_l(PHG/Z) iy J+l< szri/lz) (17)
_5” PJ+3/2+P£i/12 hQJ+1 i’j :2,“"(N+1)/2‘

Itisimportant to note that in the nonsymmetric [symmetric] case, the spectrum of rAatri
is discrete and contains, at mast— 2 [(N + 1)/2] distinct eigenvalues, while the spectrum
of Eq. (1) usually contains both discrete and continuous parts. The discreteness comes
the finite size of the numerical integration box, while the finite number of eigenvalu
is due to the finite value of the grid step simeNot surprisingly, Eq. (1) reduces to a
standard Stfm-Liouville equation, with only a discrete spectrum containing infinitely
many increasing real eigenvalues, when the domain is chosen to be the compact inte
[—a,a]or[0, a][17]. As the value oh is reduced, Eqg. (13) gives a better approximation o
the firstN — 2 [(N + 1) /2] eigenvalues of the 8Btin—Liouville spectrum. When the domain
is no longer compact, the discrete eigenvalues (if they exist at all) remain at the lower |
of the spectrum. Therefore, choosing a sufficiently large compact domain provides a \
good approximation of these lower eigenvalues, which correspond to the most unst
ballooning modes.

3.2. Variational Refinement

Using the second-order matrix scheme described in Subsection 3.1, a series of app
mations to the actual eigenvalue is computed for increasingly finer meshes, with step s
halved successively

ho
2k’
This relation is chosen to minimize the number of new Fourier inversions required
each step. Notice that in Eg. (11), the valuesRfQ, and R on the full mesh at the
(k+ 1)st iteration can be constructed without any further evaluation from their values
the full and half meshes at theh iteration. The initial step sizhg is usually chosen
very large, corresponding to a coarse mesh. The step size reduction iteration termir
for iterationk = kmax When the extrapolation error falls below the specified tolerance (s
Subsection 3.3).

When the matrix algorithm is used, the error in the eigenvalue is quadratic [14] in t
mesh spacing,

h = k=0,1,...,Knax (18)

A™ = Ao + ah? 4+ O(h3). (19)

The number of iterations needed for convergence can be reduced if the leading expone
the power law in Eq. (19) can be increased. COBRA achieves this by refining the eigenve
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obtained at each iteration so that its dependence on the mesh step size becomes qt
rather than quadratic. Becausgis a minimum, the first variation of the functional given
by Eg. (4) around the related eigenfunctibm must vanish. Suppose now thigg could
somehow be approximated to ordgaccuracy,

F = Fo+hPSF + O(hP*Y,  §F ~ O(1). (20)
InsertingF into Eq. (4), itis straightforward to obtain

(6F, Lo(y) — AoR(y)sF)
(F. R(YF)

M(F) = ho —h?P + O(h?PtY, (21)
which is thus accurate to ordep2 _

Because the solution obtained from the matrix metlfd%,approximates the real solution
to second order ih, inserting itinto Eq. (4) thus gives a fourth order accurate approximatic
at each iteration,

1Y = ro + oh* + O(h®). (22)

Now the eigenvalue has been superscripted wittvariational”) for clarity. Hereo > 0,
sincelg is a global minimum.

There is, however, a numerical subtlety related to the accuracy of the discretization chc
forthe operatot. o when) is to be evaluated. If the same second order discretization schel
in Subsection 3.1 is used farp,

Lo=L3+h%Lo+O(h®), Lo~ O(), (23)

then the numerical equivalent to Eq. (21), obtained by insefifign Eq. (4) and usind.4
instead oflg, becomes

(F_m,sLOF_mq

AF™ =2 +h2{—
(F) =20 (Fm, R(y)FM)

_ +0(hd. (24
(F™ R(y)F™) (F™ R(y)F™) (). (24)

. [2(55“, SLoF™  (8F™, LY(y) — AoR(Y)SF™)

Notice theO(h?) term which dominates and thus masks the des@&d*) scaling. To
eliminate this term, itis necessary to use at least a fourth-order accurate discretizdtigin fol
Thus by introducing the higher-order discretization only in this variational formula, Eq. (2
the required scaling given by Eq. (22) is achieved without significantly increasing t
computational time. In contrast, the efficiency of the algorithm would be critically affecte
if it were included in the matrix scheme (the matédwould no longer be tridiagonal, and
a different and slower technique would have to be used to comglte

3.3. Richardson’s Extrapolation

The computational speed of the overall COBRA algorithm depends critically on tl
number of iterations to achieve convergence of the eigenvalkiesaso in Eq. (18). Every
new iteration(k) increases the computational time by a factor of two. Because di‘the
scaling of the varitional eigenvalue in Eq. (22) [in contrast totthecaling in Eq. (19)], it
is possible to use Richardson’s extrapolation [15] on a fairly coarse mesh to neverthe
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obtain thehy — 0O limit, A, of the eigenvalue. This scheme also provides an estimate of t
extrapolation error, which is used to terminate the mesh sequencing as noted previous
Subsection 3.2.

3.4. Integration Box Size

The ballooning equation can also be transformed into adslbhger-like equation by
changing to a new variable [17],

"y
() = /O VRE/P®E) ds, (25)

and by introducing a new dependent varialble defined as

H () = [P(y(@) Ry F(y(x)). (26)

The resulting Schadinger-like equation takes the form

2

Gz T =V@IH =0, (27)

with the “ballooning potential,V, given by

2
V(T):_<Q) i[d(PR)/dt} +}[d2(PR)/dr2].

R) 16 PR 4 PR

R (28)

Using the asymptotic behaviour of the ballooning coefficients (see Eq. (3)), it is eas
verified thatV () — 0 wheny — +o0, implying that solutions fon. > 0 are in the con-
tinuum part of the spectrum. Far< 0, unstable ballooning modes can be localized in th
potential well existing at = 0 (if the well is sufficiently deep, see Fig. 1). The modes may

2.0

OO surface #13
& —-¢ surface #16
O—0 surface #22
A~ -— surface #25

FIG. 1. Ballooning potential on different magnetic surfaces as a function of field line lgnfsihthe QOS
equilibrium described in Section 4.
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FIG. 2. Unstable eigenfunction and ballooning potential for the 13th surface.

also extend to nearby wells. These wells are separated by potential barriers (see Fif
whose location along the magnetic field line strongly depends on the periodicity of t
configuration,M, and the twist of the field line along the toroidal direction, characterize
by ¢, the ratio between the number of poloidal turns carried out during one toroidal turn..
a practical prescription, the location of tkth barrier can be roughly estimated as

4
Yoarried K) ~ W(ZK -1, k=12 .... (29)

This prescription can be used to choose an appropriate valae thtoe minimum size of
the integration box, in the following way. Notice that when the mode extension goes beyc
the first few barriers, the potential is no longer able to localize/destabilize the mode, wh
ceases to be integrable (it remains bounded, however, and becomes part of the contin
part of the spectrum). A typical case is shown in Fig. 3, where a nonlocalized (stak
mode escapes through the next barriers when the integration box size is increased. ¢
only unstable modes are of interest for the stability analysis, it is thus sufficient to
a = YparriedKy) With k,, > 1 in Eqg. (29). In most COBRA rung,, = 10. Notice that this
prescription implies thaa changes at different magnetic surfaces, sinasually varies
from surface to surface due to magnetic shear.

4. NUMERICAL RESULTS

The main improvements included in COBRA with respect to the existing codes &
Richardson’s extrapolation scheme (RES), the variational refinement (VAR), and the
of symmetry. To numerically test these enhancements, some COBRA results are prese
for an unstable QOS equilibrium configuration with periodicky=3, g ~2.5%, and
containing 31 nested magnetic surfaces. Herethe volume-averaged measure of pressure
The number of modes used in the series representatiofBfoR, Z, andp is 829. The
equilibrium is ballooning unstable all across the central region as shown in Fig. 4 (remem
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FIG. 3. Stable eigenfunction and ballooning potential for the 24th surface and increasing valule tfie
upper plot, the corresponding eigenvalue is shown.

that the growth rate is given by? = —1). With respect to COBRA-specific parameters, all
runs have been done setting the extrapolation error tolerance pth@ initial step size to
ho=0.4, and the box size is set wik), = 10. All calculations have been performed on the
CRAY C-90 at the National Energy Research Supercomputer Center (NERSC).

0.40 .

0.30 _

growth rate
=3
n
=3

0.10

0.00 - ;
0 10 20 30

surface

FIG. 4. Ballooning growth rater = (—1)~2? normalized to the Alfeh time,zy = /1100 R2/BZ, p being the
plasma mass densitig, the cylindrical major radius, anBl, the magnetic field at the magnetic axis.
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FIG.5. Eigenvalue computed from the matrix scheme (open circles) and from the variational principle (VA
(closed squares) as a function of the grid step-kiz€he last few values used in the Richardson extrapolation
(RES) are represented using distinctive symbols (respectively closed circles and open squares). All nume
values used in the extrapolation are listed in Table I.

To illustrate first how VAR works, both™ andA" are plotted versus the grid step size,
h, in Fig. 5 for the 13th surface of the QOS equilibrium. The respective quadratic a
guartic scalings can be clearly seen (the “exact” eigenvalue is also shown as a straight
for an easier comparison). Notice that the matrix scheme requires a mesh with a grid
size considerably finer to approximate the eigenvalue with accuracy comparable to
obtained with VAR. Using VAR reduces the number of iterations needed inside RES: 1
last few values of™ andAY that COBRA actually needs to respectively extrapolate the fine
eigenvalue from the matrix and variational values are also plotted in Fig. 5 using distinct
symbols (all of them are listed in Table ). Not surprisingly, the faster converging variatior
values allow extrapolation of the eigenvalue from a mesh that is twice as coarse (i.e.,
times faster) for this particular case.

The performance and accuracy of COBRA compares advantageously with the ballo
ing codes currently in use. Both TERPSICHORE and 3DBALLOON rely on secon
order accurate shooting algorithms with a fixed step kiz&8o compute the eigenvalue

TABLE |
Eigenvalue Convergence Sequence on the 13th Surface

Richardson’s scheme

Matrix Variational Fixed step size
Asymmetric Symmetric Asymmetric Symmetric Asymmetric Symmetric
ho=0.4 —0.19247 —0.19426 0.09845 0.09876
h; =0.2 —0.11952 —0.11953 —0.09500 —0.09499
h,=0.1 —0.11142 —0.11142 —0.10819 —0.10819
h; =0.05 —0.10963 —0.10963
h;=0.01 —0.10945 —0.10945
Aextrapolated —0.10945 —0.10945 —0.10945 —0.10945
Kmax 4 4 3 3
CPU time(s) 0.4512 0.2268 0.2314 0.1247 1.8756 0.9465
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o—o0 h_{=0.01 (A)
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FIG.6. CPU time required (lefy-axis) to compute the ballooning growth rate from an initial symmetric point
using: (a) RES coupled to the matrix solver (open diamonds); (b) RES coupled to VAR (closed circles); (c) afi
step-size second-order shooting scheme (closed squares), and (d) the same as (c) but without using syn
(open circles). Case (d) is equivalent to the approach of TERPSICHORE or 3DBALLOON. The growth rates
also included (righty-axis) to make apparent the finer meshes usually required for those modes which are cl
to becoming stable.

with accuracy comparable to COBRA; must be chosen inside the “well-converged”
region of the quadratic power law in Fig. 5 (typically,~ 0.005— 0.01). This value is
already five times smaller than the smallest step size that COBRA would need if -
matrix scheme were used, and ten times smaller if VAR were considered. In Fig. 6,
CPU times required by the different methods are plotted together for a symmetric |
tial point choice. Notice how the use of symmetry allows a reduction of the time of tl
fixed step size scheme by a factor close to 2. When RES is coupled to the second-c
solver, the CPU time is further reduced by a factor between 3 and 5, depending on
extension of the mode along the line. Finally, the total speed gain factor approaches :
VAR is considered because VAR’s faster convergence is less sensitive to changes ir
mode extension, as shown in Fig. 6. Also notice that without any extra computing tin
convergence of the eigenvalue is guaranteed within this approach, while both TERF
CHORE and 3DBALLOON would require rerunning with a smaller step size to confirm th
point.

There are other important advantages of this new approach as well. First, COBRA ad
the step size on different surfaces at run time to take into account the varying extensio
the mode (notice that this is critical at those surfaces where the mode is close to becor
stable, as shown in Fig. 6). Second, the generality of the algorithm allows it to estimatt
the same way any other eigenvalue of the discrete part of the spectrum of the ballool
equation. Even when 3DBALLOON can also evaluate all of them, it identifies the requir
eigenvalue by counting the computed eigenfunction zeros along the magnetic line
eigenfunction associated to tkid eigenvalue must hayk — 1) zeros inside the integration
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interval [18]). However, this count can sometimes be rather sensitive because of the ut
pected appearance, close to the boundaries of the interval, of numerical zeros cause
roundoff errors whek becomes large and the eigenvalue is close to the continuum.
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